
2020-06-24

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math., LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Conditional statements
and

comparison operators

2
Conditional statements and comparison operators

Outline

• In this lesson, we will:

– Describe the need for executing code conditionally

– Describe the flow chart and emphasize the purpose of flow charts

– Describe the conditional statement

• The absolute-value and max functions

– Look at multiple conditional statements

• Clipping and the tent function

– Look at a simplification if there is no code to run if the statement is false

• The sinc function

– Finally, concluding with a simulation of the operational amplifier

3
Conditional statements and comparison operators

Conditional statements

• In programming, we can conditionally execute code if some
condition—a Boolean-valued statement—is satisfied (i.e., true)

4
Conditional statements and comparison operators

Conditional statements

• Up to this point, we have focused on examples with serial execution

– Each statement in the program is executed one statement at time

• Suppose we only want to execute a statement if a condition is true

– For example, we may ask the user for a value and then execute code
based on that value

2020-06-24

2

5
Conditional statements and comparison operators

Conditional statements

• Here is an example:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double x{};

 std::cout << "Enter a number 'x': ";

 std::cin >> x;

 if (x >= 0) {

 std::cout << "|x| = " << x << std::endl;

 } else {

 std::cout << "|x| = " << (-x) << std::endl;

 }

 return 0;

}

If the user entered a positive number,
 the first block of statements is executed;
 otherwise, the second block of statements is executed.

6
Conditional statements and comparison operators

Conditional statements

• In order to choose which block of code to execute based on a given
condition, we use a conditional statement:

 if (Boolean-valued condition) {

 // The consequent block or body of statements

 // - to be executed if the condition is true

 } else {

 // The alternative block or body of statements

 // - to be executed if the condition is false

 }

• Even though a conditional statement may have many statements
within it, the entire structure is referred to as a conditional
statement

7
Conditional statements and comparison operators

Conditional statements

• In order to execute code only if some condition is satisfied,

 we use a conditional statement:

 if (Boolean-valued condition) {

 // The consequent block or body of statements

 // - to be executed if the condition is true

 }

8
Conditional statements and comparison operators

Conditional statements

• A Boolean-valued condition is any test that returns true or false

• We will look at six such conditions:

– These are called the binary comparison operators

– Each takes two operands, each returns true or false

Operator Example

Less than x < y

Greater than x > y

Less-than or equal to x <= y

Greater-than or equal to x >= y

Equals x == y

Does not equal x != y

2020-06-24

3

9
Conditional statements and comparison operators

Conditional statements

• It is incredibly important to remember that to test equality,

 you must use the == operator and not the = operator

– The = operator is the assignment operator

• You must use <= and >=

– You cannot use =< and =>

– Write it as you say it:

• Think of “!” as meaning not

– Thus, the != operator is the not equals operator

Less than or equal to

< =

10
Conditional statements and comparison operators

The max function

• As a second example, the maximum of two values is also based on a
simple condition:

– Let’s write a program that prints the maximum of two values:

 
def

max ,
x x y

x y
y x y


 



11
Conditional statements and comparison operators

The max function

• Here is an implementation:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double x{};

 std::cout << "Enter a number 'x': ";

 std::cin >> x;

 double y{};

 std::cout << "Enter a number 'y': ";

 std::cin >> y;

 if (x >= y) {

 std::cout << "max(x, y) = " << x << std::endl;

 } else {

 std::cout << "max(x, y) = " << y << std::endl;

 }

 return 0;

}

 
def

max ,
x x y

x y
y x y


 



12
Conditional statements and comparison operators

Clipping signals

• In engineering, signals (values) often cannot exceed certain bounds

– If a signal x is greater in absolute value than some bound b,

 the bound is returned

 
def

clip

otherwise

b

b x b

x b x b

x




   



2020-06-24

4

13
Conditional statements and comparison operators

Clipping signals

• Here is an implementation:
// Function definitions

int main() {

 double x{};

 std::cout << "Enter a number 'x': ";

 std::cin >> x;

 double bound{};

 std::cout << "Enter a bound: ";

 std::cin >> bound;

 if (x >= bound) {

 std::cout << "clip(x) = " << bound << std::endl;

 } else {

 // x < bound

 if (x <= -bound) {

 std::cout << "clip(x) = " << (-bound) << std::endl;

 } else {

 std::cout << "clip(x) = " << x << std::endl;

 }

 }

 return 0;

}

 
def

clip

otherwise

b

b x b

x b x b

x




   



14
Conditional statements and comparison operators

Clipping signals

• In this example, there are three non-overlapping cases:

1. When x ≥ b

2. When x ≤ –b

3. When –b < x < b

• We can instead write such a conditional statement as
 if (x >= bound) {

 std::cout << "clip(x) = " << bound << std::endl;

 } else if (x <= -bound) {

 std::cout << "clip(x) = " << -bound << std::endl;

 } else {

 // If neither of the two previous conditions

 // is true, then -bound < x < bound

 std::cout << "clip(x) = " << x << std::endl;

 }

15
Conditional statements and comparison operators

Cascading conditional statements

• Such a sequence of if—else-if—··· statements is referred to as

 cascading conditional statements
if (condition-1) {

 // First consequent block

 // Do something

} else if (condition-2) {

 // Second consequent block

 // Do something else

} else {

 // Complementary

 // alternative block

 // Do something else,

 // yet again...

}

 Martin Püschel, Song Khon Waterfall

16
Conditional statements and comparison operators

Cascading conditional statements

• You can have as many conditions as is deemed necessary

if (condition-1) {

 // First consequent block

 // Do something

} else if (condition-2) {

 // Second consequent block

 // Do something else

} else if (condition-3) {

 // Third consequent block

 // Do something else

} else {

 // Complementary

 // alternative block

 // Do something else,

 // yet again...

}

 Martin Püschel, Song Khon Waterfall

2020-06-24

5

17
Conditional statements and comparison operators

Cascading conditional statements

• As before, it is not necessary to have a

 complementary alternative block
if (condition-1) {

 // First consequent block

 // Do something

} else if (condition-2) {

 // Second consequent block

 // Do something else

} else if (condition-3) {

 // Third consequent block

 // Do something else

}

 Martin Püschel, Song Khon Waterfall

18
Conditional statements and comparison operators

The tent function

• A tent function is defined as:

 
def

0 1

1 1 0
tent

1 0 1

0 1

x

x x
x

x x

x

 


   
 

  
 

19
Conditional statements and comparison operators

Cascading conditional statements

• Here is an implementation:
// Function definitions

int main() {

 double x{};

 std::cout << "Enter a number 'x': ";

 std::cin >> x;

 if (x <= -1.0) {

 std::cout << "tent(x) = " << 0.0 << std::endl;

 } else if (x <= 0.0) {

 std::cout << "tent(x) = " << (x + 1.0) << std::endl;

 } else if (x <= 1.0) {

 std::cout << "tent(x) = " << (1.0 - x) << std::endl;

 } else {

 std::cout << "tent(x) = " << 0.0 << std::endl;

 }

 return 0;

}

Once a condition is checked and evaluates
to true, no subsequent conditions are checked

20
Conditional statements and comparison operators

How not to use cascades

• Novice programmers sometimes want to emphasize the conditional
checks:

• Don’t do this:

– The second condition is complementary to the first

– Experienced programmers reading this will be confused

• They expect that there are some values of x that satisfy neither condition

– Maintenance becomes more difficult

if (x == 0) {
 // Do something...
} else if (x != 0) {
 // Do something else...
}

if (x <= 0) {
 // Do something...
} else if (x > 0) {
 // Do something else...
}

2020-06-24

6

21
Conditional statements and comparison operators

Common errors with cascades

• Consider this code:
if (x < -1.0) {

 std::cout << 0.0;

} else if (x < 0.0) {

 std::cout << -1.0;

} else if (x > 0.0) {

 std::cout << 1.0;

} else if (x > 1.0) {

 std::cout << 0.0;

} else {

 std::cout << 0.0;

}

• What are the errors in this cascade?

22
Conditional statements and comparison operators

Summary

• Following this lesson, you now:

– Understand the format of a conditional statement:

• A Boolean-valued condition

• A consequent block of statements to be executed if the condition is true

• An alternative block of statements to be executed if the condition is false

– Know that the condition may be a comparison:

• One of six comparison operators with two operands

– Understand alternative block is not required

– Know how to have a cascading conditional statement with two or more

conditions, each with their own associated block of statements

23
Conditional statements and comparison operators

References

[1] Wikipedia

 https://en.wikipedia.org/wiki/Conditional_(computer_programming)

24
Conditional statements and comparison operators

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)

2020-06-24

7

25
Conditional statements and comparison operators

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

